目录

前言		1.1
芯片	台简介	1.2
芯片	计产业链	1.3
	不同公司的不同模式	1.3.1
	产业链总结	1.3.2
芯片相关总结		1.4
	芯片名词对比	1.4.1
	芯片公司关系	1.4.2
	芯片分类	1.4.3
附录	₹	1.5
	名词解释	1.5.1
	参考资料	1.5.2

芯片产业链总结

最新版本: v1.0更新时间: 20190530

简介

介绍了芯片是什么,总结了芯片产业链的概况,芯片设计的流程,常见芯片相关公司的关系,各种芯片相关名词和概念的含义,常见芯片的功能分类,以及常见名词之间的对比,相关名词术语解释。

源码+浏览+下载

本书的各种源码、在线浏览地址、多种格式文件下载如下:

Gitbook源码

• crifan/ic_chip_industry_chain_summary: 芯片产业链总结

如何使用此Gitbook源码去生成发布为电子书

详见: crifan/gitbook template: demo how to use crifan gitbook template and demo

在线浏览

- 芯片产业链总结 book.crifan.com
- 芯片产业链总结 crifan.github.io

离线下载阅读

- 芯片产业链总结 PDF
- 芯片产业链总结 ePub
- 芯片产业链总结 Mobi

版权说明

此电子书教程的全部内容,如无特别说明,均为本人原创和整理。其中部分内容参考自网络,均已备注了出处。如有发现侵犯您版权,请通过邮箱联系我 admin 艾特 crifan.com ,我会尽快删除。谢谢合作。

鸣谢

感谢我的老婆陈雪的包容理解和悉心照料,才使得我 crifan 有更多精力去专注技术专研和整理归纳出这些电子书和技术教程,特此鸣谢。

更多其他电子书

本人 crifan 还写了其他 100+ 本电子书教程, 感兴趣可移步至:

crifan/crifan_ebook_readme: Crifan的电子书的使用说明

crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2021-01-17 00:20:02

芯片简介

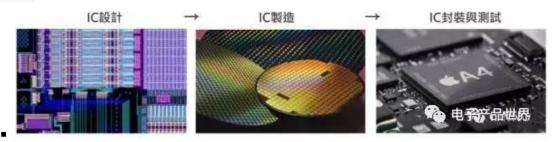
IC芯片

o 位置: 电路板上的

o 外形: 长的像 蜈蚣, 有很多 脚 的

超大規模積體電路約有十萬個電晶體 电子产品世界

- o = IC = Integrated Circuit = 集成电路
- o 定义: 在电子学中是把电路(包括半导体装置、组件)小型化、并制造在半导体晶圆表面上
 - 半导体 只是制作 IC 的原料
 - -》也有人把 IC 叫做 半导体
 - -》由于涉及到把电路缩小
 - IC芯片 也常被叫做:
 - 微电路 = Micro Circuit = microcircuit
 - 微芯片 = Micro Chip = microchip
 - 芯片chip


crifan.com, 使用署名4.0国际(CC BY 4.0)协议发布 all right reserved, powered by Gitbook最后更新: 2019-04-30 21:11:14

芯片产业链

而和 IC芯片 相关的产业链, 就叫做 芯片产业链。

接着先介绍 芯片产业链 的总体布局和逻辑:

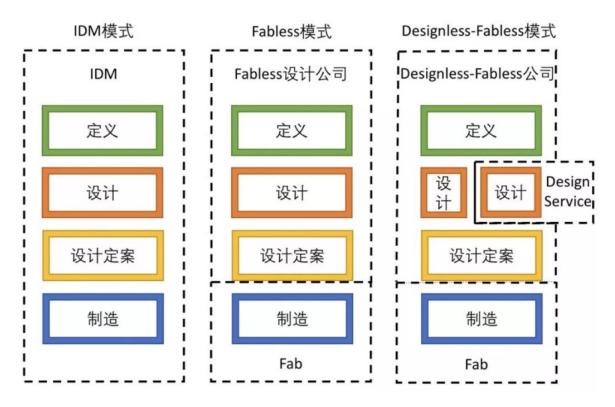
- 台湾媒体常称为: 半导体产业链
- 正确叫法: IC产业链
 - 。 包括:
 - IC设计
 - IC制造
 - IC封装和测试
 - o 长什么样

crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:11:09

芯片产业链中不同公司的不同模式

- IDM = 整合组件制造商 模式
 - o = 全产业链 模式
 - = (设计,制造,封装,销售等)啥都干
 - 。 领导厂商
 - Intel 、 德州仪器 = TI 、 三星
 - 。 特点
 - 集芯片设计、制造、封装、测试、销售等多个产业链环节于一身
 - 。 优势
 - 能在设计、制造等环节达到最佳优化,充分发挥技术极限
- Foundry = 代工厂 模式
 - 。 =只生产(芯片)不设计(芯片)
 - 。 领导厂商
 - 台积电 = TSMC 、 联电 、 日月光 、 矽品
 - 如图

封裝測試

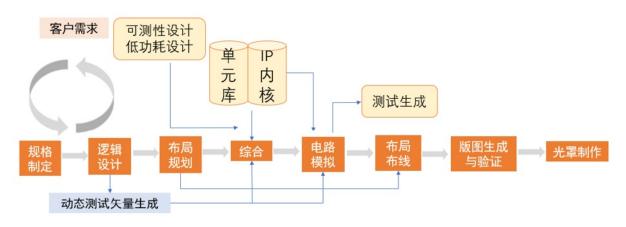

- o 特点
 - 只负责制造、封装或测试的其中一个环节
 - 不负责芯片设计
- 。 优势
 - 不承担商品销售、或电路设计缺陷的市场风险
 - IC 设计商才是做品牌营销、卖芯片产品的
 - 做代工,获利相对稳定
- 。 劣势
 - 仰赖实体资产,投资规模甚巨、维持产线运作的费用高
- Fabless = 无厂IC设计商 模式
 - 。 =只设计(芯片)不生产(芯片)
 - o 别称:
 - Design House
 - 。 领导厂商
 - 高通 = Qualcomm 、 联发科 = MTK 、 博通 = Broadcom 、 展讯
 - 如图

- 。 特点
 - 只负责芯片的电路设计与销售
 - 将生产、测试、封装等环节外包
- 。 优势
 - 无庞大实体资产,创始的投资规模小、进入门坎相对低,以中小企业为主
- 。 劣势
 - 与IDM 企业相比,较无法做到完善的上下游工艺整合、较高难度的领先设计
- Design Service = 芯片设计服务提供商 模式
 - o =只为设计(芯片)提供服务(工具或 IP Core)=辅助厂商或工具商
 - 。 背景:
 - IC 设计公司设计IC时
 - 他们会需要一些设计工具
 - 和一些辅助厂商的辅助和配合
 - 。 特点
 - 不设计和销售芯片
 - 为芯片设计公司提供相应的工具、完整功能单元、电路设计架构与咨询服务
 - 由于没有实体产品、而是贩卖知识产权IP"设计图"
 - 又称: SIP = Silicon Intelligent Property = 硅智能财产 = 硅智财 = 硅智产
 - o 优势
 - 无庞大实体资产。公司规模较小、资金需求不高,但对于技术的要求非常高
 - 不必负担产品销售的市场风险
 - 。 劣势
 - 市场规模较小且容易形成垄断,后进者难以打入
 - 。厂商
 - EDA = 电子设计自动化 工具
 - 作用
 - IC 设计工程师会先利用 (Verilog 、 VHDL 等) 程序代码实现芯片功能

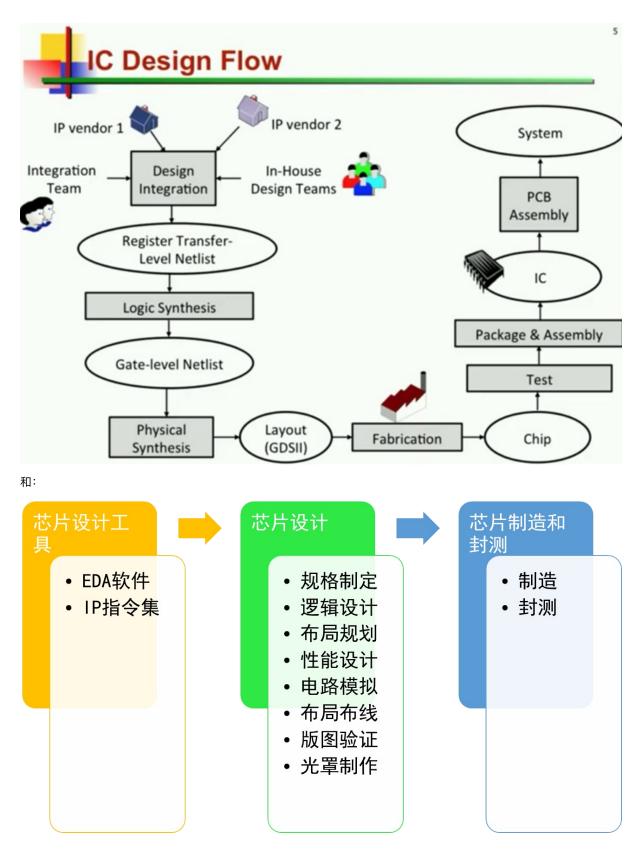
- 硬件功能是软件代码写成的
- 而 EDA 工具能让程序代码再转成实际的电路图
 - 然后通过
 - 仿真 = logic simulation
 - 可以用自动化逻辑综合工具去识别并自动转换 硬件描述语言 到 逻辑门级网表
 - 使得硬件描述语言可以被用来进行电路系统设计,并能通过逻辑仿真的形式验证电路功能
 - 综合 = logic synthesis
 - 设计完成后,可以使用逻辑综合工具生成低抽象级别(门级)的网表(即连线表)
 - 等工序转换为电路图
- 典型厂商
 - Cadence
 - Synopsys
 - Imagination
- 辅助类
 - ARM
 - 特点
 - 只设计内核
 - 为芯片设计公司提供相应的功能单元
 - CPU Core
 - Cortex 系列
 - FPU Core
 - GPU Core
 - Mali 系列
 - USB Core
 - 等等
 - 比如
 - 希望芯片上能有一个浮点运算功能时
 - 可以不用自己花时间从头开发
 - 向ARM购买一个已经写好的功能即可

不同模式总结

crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:11:00

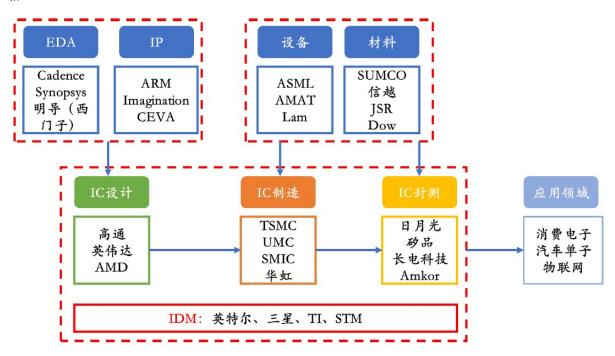

产业链总结

下面对芯片产业链做个简单的总结。


芯片行业全产业链

其中从需求到制作的流程是:

芯片设计流程



不同芯片公司在产业链中的关系

下图概要的解释了不同公司之间的关系:

和:

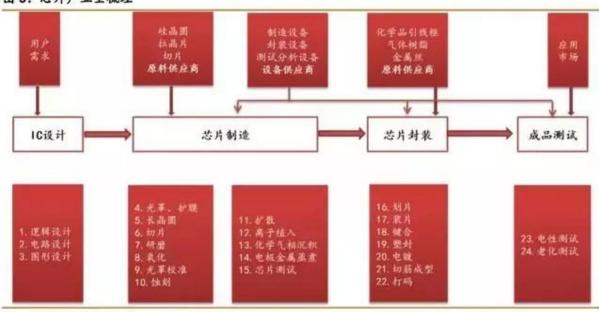
和:

芯片设计工具

- 美国英特尔
- 英国ARM
- 英国Imagination
- 美国IBM
- 美国Mips
- Synopsys
- 美国Cadence
- 美国Mentor Grap hics
- 日本图研
- 华大九天
- 杭州中天微
- 苏州国芯
- 寒武纪

芯片设计

- 美国苹果
- 韩国三星
- 英国Imagination
- 海思
- 紫光展锐(展讯+ 锐迪科)
- 中兴微电子
- 华大半导体
- 汇顶科技
- 兆易创新
- 寒武纪

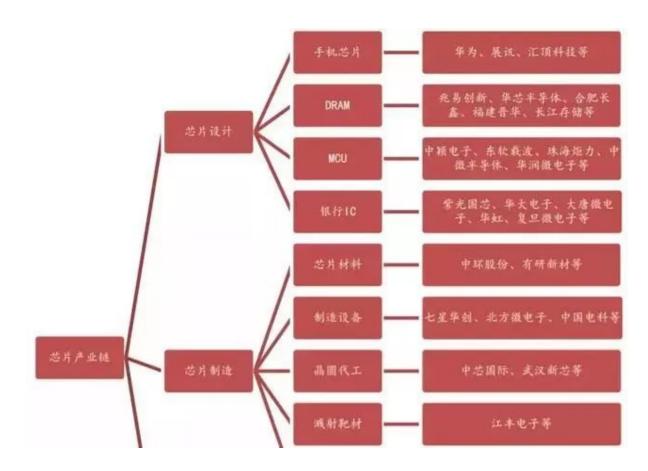

芯片制造和封测

- 美国英特尔
- 韩国三星
- 美国高通
- 美国英伟达
- 台积电
- 中芯国际
- 华虹半导体
- 长江存储
- 合肥长鑫
- 福建晋华
- 紫光国微
- 长电科技
- 华天科技
- 通富微电

芯片产业全梳理

以及另外一个总结:

图 5: 芯片产业全梳理


数据来源:中国产业信息网,西南证券整理

主流芯片厂商及关系

资料来源: IC insights, Gartner, SEMI, 充大证券研究所整理

中国的主流芯片厂商

芯片厂商排名

国际上的总体排名:

2016年全球半导体行业前 20 名,中国大陆无缘前 20 强

	10.0			
排名	公司	国家	销售额 (百万美元)	同比%
1	英特尔	美国	56313	8%
2	三星	韩国	43535	4%
3	台积电	台湾	29324	11%
4	高通	美国	15436	-4%
5	博通	新加坡	15332	1%
6	SK 海力士	韩国	14234	-15%
7	镁光	美国	12842	-11%
8	德州仪器	美国	12349	2%
9	东芝	日本	10922	16%
10	恩智浦	欧洲	9498	-10%
11	联发科	台湾	8610	29%
12	英飞凌	欧洲	7343	6%
13	意法	欧洲	6944	1%
14	苹果	美国	6493	17%
15	索尼	日本	6466	3%
16	英伟达	美国	6340	35%
17	瑞萨	日本	5751	1%
18	格罗方德	美国	5085	-11%
19	安森美	美国	4858	0%
20	联华电子	台湾	4455	0%
			30.0000	

中国芯片公司排名:

中国2016年前十大IC设计企业

公司	营业收入 (亿元)
深圳海思半导体有限公司	260
北京清华展锐	125
北京君正 (并购豪威)	90
深圳中兴微电子	60
华大半导体有限公司	34
北京智芯微电子有点公司	32.15
深圳汇顶科技股份有限公司	30
杭州士兰微电子股份有限公司	23
大唐半导体设计有限公司	23
北京芯成半导体有限公司	23

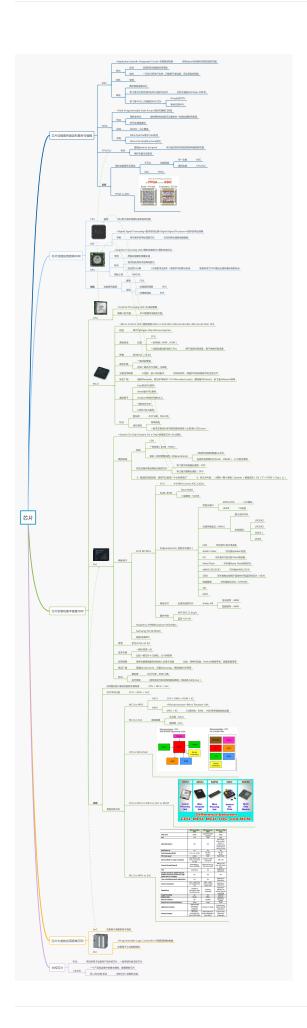
中国芯片公司市场占有率:

国内核心芯片设计领域占有率低

系统	设备	核心集成电路	国产芯片占有率
计算机系统	服务器	MPU	O%
	个人电脑	MPU	O%
	工业应用	MCU	2%
通用电子系统	可编程逻辑设备	FPGA/EPLD	O%
	数字信号处理设备	DSP	O%
通信装备	移动通信终端	Application processor	18%
		Communication	220/
		processor	22%
		Embedded MPU	0%
		Embedded DSP	0%
	核心网络设备	NPU	15%
内存设备	半导体存储器	DRAM	O%
		NAND FLASH	O%
		NOR FLASH	O%
		Image processor	5%
显示及视频系统	高清电视/智能电视	Display processor	5%
		Display driver	O%

国内设计厂商全球市占率(%)

细分方向	大陆企业全球市占率	国内相关公司(标黑为上市公司)
存储芯片	1%	长江存储、合肥长鑫、福建晋华
CPU/MPU	1%	龙芯、兆芯、飞腾、申威等
AP/BP	12%	华为海思、紫光展讯
传感器执行器	1%	士兰微
MCU 芯片	6%	兆易创新、中颖电子、炬力、华润微电子、华 大半导体等
模拟芯片	1%	圣邦股份、韦尔股份
FPGA/CPLD	1%	京微雅格、高云 FPGA、同方国芯、上海安路、 西安智多晶鞥


crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:11:05

芯片相关总结

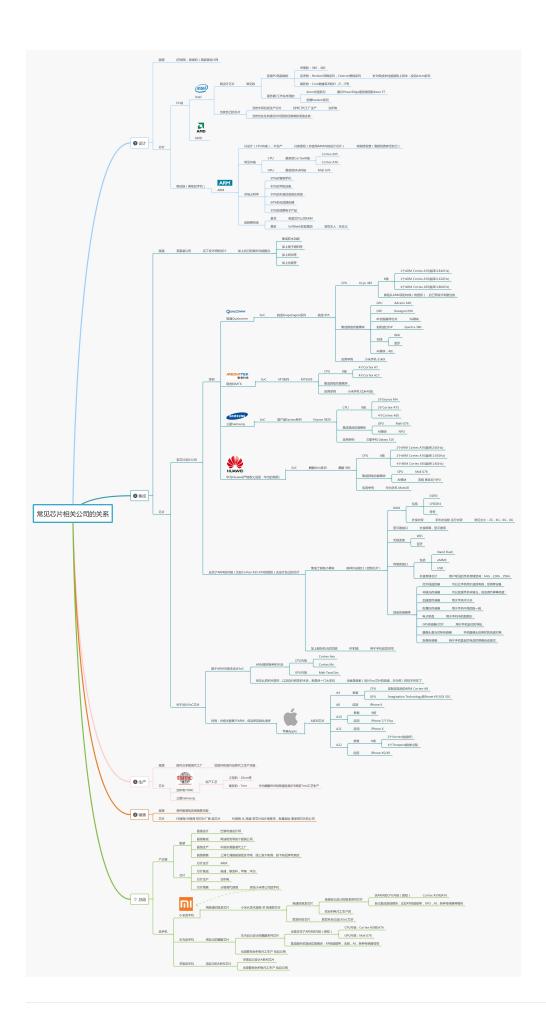
crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:10:53

芯片名词对比

之前已整理,如图:

想要查看最新版本的、可缩放的、大的、脑图,可以去看线网页:

芯片相关名词对比 在线查看


详见相关帖子:

【整理】芯片相关名词对比: CPU, MCU, SoC, MPU, PLC, DSP, ASIC, FPGA

crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:10:49

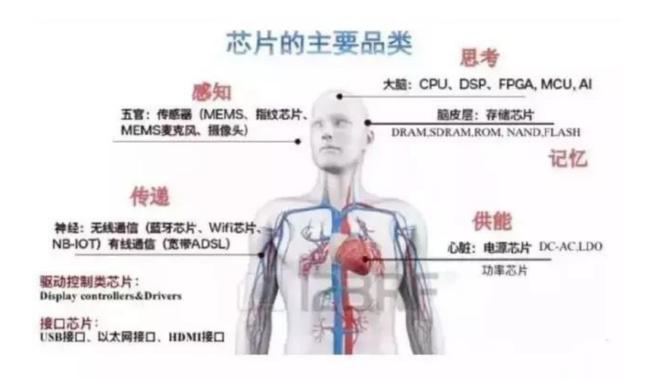
芯片公司关系

之前已整理,如图:

想要查看最新版本的、可缩放的、大的、脑图,可以去看线网页:

常见芯片相关公司的关系 在线查看

详见相关帖子:


【整理】以服装从设计到销售类比解释常见芯片相关公司之间的关系

crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:10:40

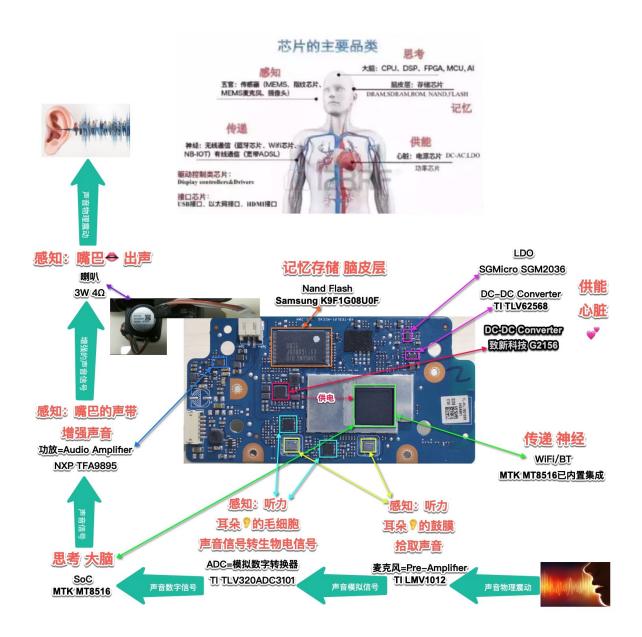
芯片分类

用人去类比, 根据功能划分

再去根据芯片的功能类型,用人体去类比解释的不同功能的芯片:

来源:公开资料整理,中泰证券研究所

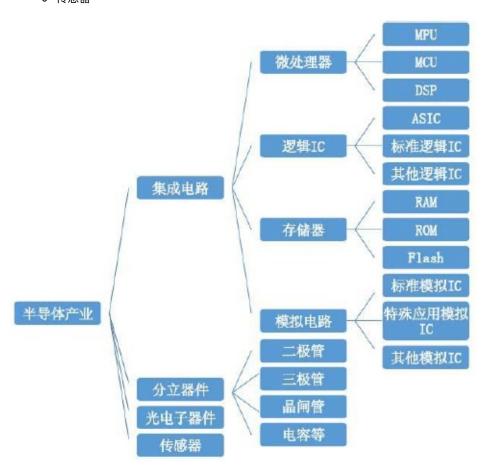
拆解的电子设备,就像一个有机的整体:人体


- 思考的大脑
 - 。 主控芯片
 - CPU/SoC/FPGA/MCU
 - 。 辅助芯片
 - 图形图像处理的
 - GPU
 - 人工智能计算的
 - AI芯片
- 存储的脑皮层
 - Nand Flash/ SD/MMC
- 供能的心脏
 - 。 电源芯片=电源管理芯片=电压转换芯片=功率芯片
 - DC-DC
 - LDO
- 传递信息的神经

- o 无线
 - WiFi
 - 蓝牙
 - NB-IOT
- o 有线
 - LAN
- 感知的五官
 - 。 各种传感器
 - 手的触觉
 - 指纹芯片
 - 听的耳朵
 - 麦克风
 - 看的眼睛
 - 摄像头
 - 方向的
 - 指南针
 - 等等
- 控制和驱动 各个肢体
 - 。 各个外设的控制器
- 不同的肢体
 - 。 不同的外设
 - USB
 - 有线的以太网
 - HDMI接口

以天猫精灵方糖为例用人体类比芯片功能

举例: 智能音箱拆解总结 天猫精灵方糖拆解报告和BOM


效果是:

从产业链角度划分

- 半导体产业
 - 。 集成电路
 - 微处理器
 - MPU
 - MCU
 - DSP
 - ASIC
 - 逻辑IC
 - 标准逻辑IC
 - 其他逻辑IC
 - 存储器
 - RAM
 - ROM
 - Flash

- 模拟电路
 - 标准模拟IC
 - 特殊应用模拟IC
 - 其他模拟IC
- 。 分立器件
 - 二极管
 - 三极管
 - 晶闸管
 - 电容等
- 。 光电子器件
- o 传感器

根据用途划分

专用芯片快速追赶,通用芯片差距较大

crifan.com, 使用署名4.0国际(CC BY 4.0)协议发布 all right reserved, powered by Gitbook最后更新: 2019-04-30 21:10:37

附录

下面列出相关参考资料。

crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:10:14

名词解释

HDL = Hardware Description Language = 硬件描述语言

在电子学中,硬件描述语言(英语:hardware description language, HDL)是用来描述电子电路(特别是数字电路)功能、行为的语言,可以在寄存器传输级、行为级、逻辑门级等对数字电路系统进行描述。随着自动化逻辑综合工具的发展,硬件描述语言可以被这些工具识别,并自动转换到逻辑门级网表,使得硬件描述语言可以被用来进行电路系统设计,并能通过逻辑仿真的形式验证电路功能。设计完成后,可以使用逻辑综合工具生成低抽象级别(门级)的网表(即连线表)

硬件描述语言在很多地方可能和传统的软件编程语言类似,但是最大的区别是,前者能够对于硬件电路的时序特性进行描述。硬件描述语言是构成电子设计自动化体系的重要部分。小到简单的触发器,大到复杂的超大规模集成电路(如微处理器),都可以利用硬件描述语言来描述。常见的硬件描述语言包括 verilog 、 VHDL 等

Verilog 语言

举例:

四选一的多路选择器

对应的代码:

```
module mux(out,select,in0,in1,in2,in3);
output out;
input [1:0]select;
input in0,in1,in2,in3;
//具体的寄存器传输级代码
endmodule
```

语法高亮后:

```
module mux(out, select, in0, in1, in2, in3);
output out;
input [1:0] select;
input in0, in1, in2, in3;
//具体的寄存器传输级代码
endmodule
```

crifan.com,使用署名4.0国际(CC BY 4.0)协议发布 all right reserved,powered by Gitbook最后更新: 2019-04-30 21:10:24

参考资料

- 终于有人讲透了芯片设计流程!
- 国内芯片产业链及主要厂商梳理,芯片的各个细分领域龙头有哪些呢? -电子发烧友网
- 一文看懂中国芯片行业发展情况,半导体核心产业链分析
- 【E课堂】IC产业专业名词及产业链关系
- IC产业专业名词及产业链关系
- 硬件描述语言 维基百科, 自由的百科全书
- Verilog 维基百科, 自由的百科全书
- Xilinx创新项目社区
- 超声波人体通信系统
- 逻辑仿真 维基百科, 自由的百科全书
- 逻辑综合 维基百科, 自由的百科全书
- 【整理】芯片相关名词对比: CPU, MCU, SoC, MPU, PLC, DSP, ASIC, FPGA
- 常见芯片相关公司的关系 在线查看
- 【整理】以服装从设计到销售类比解释常见芯片相关公司之间的关系
- 芯片相关名词对比 在线查看
- Managing a Fabless Semiconductor Supply Chain Best Practices YouTube
- Module 1 Trust Issues in Integrated Circuit Supply Chain YouTube
- AI芯片最强科普 | 机器之心
- 产业图解:芯片(设计篇)

crifan.com, 使用署名4.0国际(CC BY 4.0)协议发布 all right reserved, powered by Gitbook最后更新: 2019-04-30 21:10:19